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Klein tunneling near the Dirac 
points in metal-dielectric multilayer 
metamaterials
Lei Sun  , Jie Gao & Xiaodong Yang  

The Klein tunneling of optical waves near the Dirac points in the metal-dielectric multilayer 
metamaterials is theoretically investigated and demonstrated through the coupled-mode theory 
under the tight-binding approximation and the rigorous band structure analysis based on the transfer-
matrix method. The optical analogue of Klein tunneling for the relativistic electrons passing across a 
potential barrier is revealed by the iso-frequency contour analysis and numerical simulation to describe 
the optical beam propagation and refraction across the interface of two metal-dielectric multilayer 
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also explained by the coupled mode theory.

Klein tunneling represents the phenomenon that the relativistic fermions can pass across a high potential barrier 
without the exponential damping, which is a particular property that arising from the existence of negative-energy 
solutions of the Dirac equation1–5. Although, the Klein tunneling for charge carriers acting as massless Dirac 
fermions in graphene heterojunctions is demonstrated6–8, the Klein tunneling for relativistic electrons is very 
difficult to be directly observed in experiments due to the required experimental condition of extremely high 
energy. Since Klein tunneling can be described as a wave phenomenon, optical analogues of Klein tunneling 
for light beam propagation in waveguide lattices and photonic crystals with conical dispersion are studied in 
numerical simulations9–12. Recently, metal-dielectric multilayer metamaterials with unique dispersion relation 
are utilized for realizing many intriguing optical phenomena such as negative refraction13, 14, sub-wavelength 
focusing15, 16, diffraction-free propagation17–19, and anomalous indefinite cavities20. The strong spatial disper-
sion in metal-dielectric multilayer metamaterials will induce the optical nonlocality, which is connected to the 
coherent coupling of surface plasmon polariton (SPP) eigenmodes propagating along the interfaces of metal 
and dielectric layers21, 22. It is shown that the degeneracy of the symmetric and anti-symmetric SPP modes in 
metal-dielectric multilayers forms the Dirac point at the centre of the Brillouin zone, where an effectively zero 
“optical mass” is realized23, 24. The existence of the Dirac points in metal-dielectric multilayer metamaterials not 
only enable important research topics about the epsilon-near-zero metamaterials23, 24 and the nonlocal effective 
medium theory25–29, but also open new opportunities in connecting the classical electrodynamics system and the 
relativistic quantum mechanics system30, 31 for exploring relativistic phenomena for massless Dirac fermions in 
condensed matter physics such as Zitterbewegung effect32, 33, etc. Furthermore, it is worth mentioning that except 
for the metal-dielectric multilayer metamaterials, the Dirac point can also be found in a simple lattice of graphene 
sheets embedded in a dielectric host medium, which can raise the topological phase transition in the system34.

In this work, the Klein tunneling of optical waves near the Dirac points in the lossless metal-dielectric mul-
tilayer metamaterials is investigated and demonstrated through theoretical analysis and numerical simulation. 
Compared with the binary dielectric superlattices that previously applied to study the Klein tunneling for optical 
waves9, 10, the lossless metal-dielectric multilayer metamaterials not only have a simpler structure, which can 
be tuned to achieve the Klein tunneling easily, but also possess a special band structure associated with the two 
SPP eigenmodes, which can be degenerated to form the Dirac point, resulting in a better analogue to the Klein 
tunneling in graphene. According to the specified coupled-mode theory under the tight-binding approxima-
tion, the connection between the metal-dielectric multilayer metamaterials and the relativistic fermions system 
described by the Dirac equation is revealed. The band structures of metal-dielectric multilayer metamaterials are 
analyzed based on the transfer-matrix method to reveal both the frequency regions of Klein tunneling around 
the Dirac points and the Klein tunneling zone in the wave vector space. The optical analogue of Klein tunneling 
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for the relativistic electrons passing across a potential barrier is further illustrated by the iso-frequency contour 
analysis to describe the optical wave propagation and refraction across the interface between two metal-dielectric 
multilayer metamaterial stacks, which is coincident with the optical beam tunneling visualized from numerical 
simulation. Furthermore, the transmission and reflection spectra of the Klein tunneling of optical waves across 
the interface of two multilayer metamaterial stacks are also explained based on the coupled-mode theory.

Results
Coupled-mode theory and Dirac equation. As displayed in Fig. 1(a), two metal-dielectric multilayer 
metamaterial stacks with an interface located at x = 0 are considered. The multilayer metamaterial stack along the 
negative x-direction in Region 1 is composited of infinite alternating layers of gold (Au) and fused silica (SiO2), 
while the multilayer metamaterial stack along the positive x-direction in Region 2 is made of infinite alternating 
layers of gold (Au) and alumina (Al2O3). The light propagating inside the metamaterials in the x-z plane is TM 
(transverse magnetic) polarized. The thickness of the Au layer is am = 10 nm, while the thicknesses of the SiO2 
layer and the Al2O3 layer are the same as ad = 400 nm. The permittivity of Au is describe by the Drude model as 
ε ε ω ω ω γ= − +∞ i/ ( )m p

2  with the offset constant ε∞ = 9 and the plasma frequency ωp = 13.8 × 1012 rad/s35. The 
damping factor γ in the Drude model is set to be zero in the current analysis in order to emphasize the SPP eigen-
modes that associated with the Klein tunneling. In addition, the permittivities of SiO2 and Al2O3 are simplify set 
as ε = . × .1 45 1 45d

(1) 36 and ε = . × .1 76 1 76d
(2) 37, respectively. Note that in order to distinguish the same physical 

quantities in either the Au-SiO2 multilayer or the Au-Al2O3 multilayer, the superscripts of (1) and (2) are applied.
As depicted in Fig. 1(b), each metal-dielectric multilayer stack can be regarded as the combination of infinite 

coupled dielectric-metal-dielectric waveguide array, where a single waveguide with two eigenmodes can be num-
bered by the index of n, while the two eigenmodes supported in the nth waveguide are numbered as the 2n mode 
and the 2n + 1 mode, respectively38. Therefore, the band structure of each metal-dielectric multilayer stack can be 
described by the coupled-mode theory39. Under the tight-binding approximation, the coupled-mode theory for 
each of the two metal-dielectric multilayer stacks can be expressed as

β δ κ κ− + − = − +− +z A A Ai( d/d ) (1)n n n0 2 2 1 2 1

β δ κ κ− + + = −+ +z A A Ai( d/d ) (2)n n n0 2 1 2 2 2

where β0 presents the propagation constant of optical wave, δ presents the propagation constant difference of 
mode, and κ presents the mode coupling strength [Appendix 1]. Moreover, the wave functions A2n and A2n+1 
individually denote the 2n mode and the 2n + 1 mode in the n th waveguide, while the wave functions A2n−1 and 
A2n+2 individually denote the 2(n − 1) + 1 mode in the (n − 1)th waveguide and the 2(n + 1) mode in the (n + 1)
th waveguide. According to the Bloch’s theorem, Eqs (1) and (2) can be solved by setting the wave functions A2n−1, 
A2n, A2n+1, and A2n+2 as
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Figure 1. (a) Schematic of two metal-dielectric multilayer metamaterial stacks with an interface with respect 
to the TM polarized light, consisting of the Au-SiO2 multilayer stack in Region 1 and the Au-Al2O3 multilayer 
stack in Region 2. (b) Schematics of a single dielectric-metal-dielectric waveguide and the coupled waveguide 
array with two eigenmodes marked as the 2n mode and the 2n + 1 mode for the nth waveguide.
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with the periodic phase shift φ = kx(am + ad) and the amplitudes A and B respectively for the two modes in a single 
waveguide. With respect to the wave functions in Eq. (3), the band structure of the metal-dielectric multilayer 
stacks can be obtained from Eqs (1) and (2) [Appendix 1] as

β β δ κ κ φ= ± + −± 2 2 cos (4)0
2 2 2

In general, Eq. (4) indicates that the band structure possesses both the β+-branch and the β−-branch with respect 
to the frequency ω. The relation between the propagation constants β± and kx at a certain frequency ω based on 
Eq. (4) represents the iso-frequency contour (IFC). Since the tight-binding approximation only considers the 
coupling among the adjacent waveguides, the band structure predicted in Eq. (4) is only accurate around the 
Brillouin zone centre compared with the rigorous results based on the transfer-matrix method (see the following 
analysis). Nevertheless, Eqs (1) and (2) can still reveal the in-depth mechanism about the propagation of the TM 
polarized light in the metal-dielectric multilayer stacks. By introducing the relations of
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ψ ψ ξ ψ ξ ξ± = ± ∂ ∂ n z z z( 1, ) ( , ) ( , )/ (6)1,2 1, 2 1,2

with the continuous transverse coordinate ξ ↔ = = ⌊ ⌋n x a x afloor( / ) /  under the assumption of the slow mode 
amplitude variation between the adjacent waveguides, where a = am + ad is the thickness of multilayer unit cell, 
Eqs (1) and (2) can be rewritten as
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1 0
0 13  are the Pauli matrices. By comparing with the one-dimensional Dirac equa-

tion along the x-direction

ψ σ ψ σ ψ ψ∂
∂
= −

∂
∂
+ +

t
c

x
mc V xi i ( ) (8)1

2
3� �

it is shown that the coupled-mode theory in Eq. (7) has the same format as the Dirac equation with the coefficient 
mapping relations of κ ↔ c, δ ↔ mc2/ħ, and −β0 ↔ V(x)/ħ, and the variable mapping relations of z ↔ t and ξ ↔ x. 
Furthermore, the positive- and negative-energy solutions of the Dirac equation can be mapped into the β+- and 
β−-branches of the band structures in the metal-dielectric multilayer stack, respectively. Therefore, the Klein tun-
neling for the relativistic electrons passing across a potential barrier in the relativistic quantum mechanics can be 
mimicked by its optical analogue where the TM polarized light waves propagate and refract across the interface 
of two metal-dielectric multilayer metamaterial stacks.

Band structure analysis for Klein tunneling. In order to precisely predict the Klein tunneling of optical 
waves across the interface of two metal-dielectric multilayer metamaterial stacks, the rigorous band structure 
based on the transfer-matrix method is considered to describe the propagation of the TM polarized light in each 
metal-dielectric multilayer stack as

+ =

− +ε
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where ε= −k k kmx m z0
2 2  and ε= −k k kdx d z0

2 2 . Generally, the rigorous band structure in Eq. (9) implies the 
relations among the wave vectors kx, kz, and the frequency ω, containing the information of both the IFC at a 
certain frequency ω and the dispersion relation at a certain wave vector kx (especially at the Brillouin zone centre 
kx = 0). Similar to the coupled-mode theory, the IFCs obtained from Eq. (9) for each metal-dielectric multilayer 
stack also possess two branches, in which the symmetric mode with wave vector βs and the anti-symmetric mode 
with wave vector βa can be defined at the Brillouin zone centre. Furthermore, the degeneracy of the symmetric 
mode and the anti-symmetric mode forms the Dirac points, leading to giant optical nonlocality in the 
metal-dielectric multilayer stacks. Figure 2(a) displays the dispersion relation between the normalized wave vec-
tor kz/kp and the normalized frequency ω/ωp at kx = 0 for two metal-dielectric multilayer metamaterial stacks, 
where the plasma wave vector kp = ωp/c is associated with the plasma frequency ωp and the speed of light c in free 
space. The dispersion relations for the Au-SiO2 and Au-Al2O3 multilayer stacks are denoted by the blue curves and 
the red curves, respectively, including both the symmetric modes βs

(1) and βs
(2) and the anti-symmetric modes βa

(1) 
and βa

(2). Clearly, the degeneracy of the symmetric and anti-symmetric modes leads to the emergence of the Dirac 
points at the frequencies ωD

(1) and ωD
(2) for the Au-SiO2 and Au-Al2O3 multilayer stacks, respectively. According to 

the theory describing the Klein tunneling in the relativistic quantum mechanics, the frequency band for the Klein 
tunneling of optical wave to occur is from ωL = 0.0788ωp (173.098 THz) to ωH = 0.120ωp (262.559 THz) for the 
current two multilayer stacks, where ωL is determined by the intersection of the dispersion curves for the sym-
metric mode βs

(1) and the anti-symmetric mode βa
(2), and ωH is located at the intersection of the dispersion curves 
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for the anti-symmetric mode βa
(1) and the symmetric mode βs

(2). Furthermore, as shown in Fig. 2(a) the frequency 
band of Klein tunneling is divided into three frequency ranges as I, II, and III, with respect to the locations of two 
Dirac points.

Figure 2(b) further shows the typical IFCs at the frequency of ω = 0.095ωp (208.652 THz) in the frequency 
range II for the Au-SiO2 (solid blue curves) and Au-Al2O3 (solid red curves) multilayer stacks. For the Au-SiO2 
multilayer stack, it is clear that the IFCs possess two different branches with the anti-symmetric mode βa

(1) in the 
lower branch and the symmetric mode βs

(1) in the upper branch at the Brillouin zone centre. The similar IFC 
profiles are also observed for the Au-Al2O3 multilayer stack, but with the βa

(2) mode in the upper branch and the 
βs
(2) mode in the lower branch. This is because the selected frequency ω = 0.095ωp is located between the two 

Dirac point frequencies ωD
(1) and ωD

(2) for the two multilayer stacks and there is a band inversion across the Dirac 
points, which is coincident with the dispersion relations shown in Fig. 2(a). Besides, the IFCs obtained from the 
coupled-mode theory (dashed curves) are also plotted for comparison, indicating that the coupled-mode theory 
only works well around the Brillouin zone centre. Note that both the energy and momentum are conserved in the 
Klein tunneling for the relativistic electrons passing across a potential barrier. For the optical analogue of Klein 
tunneling working at a specific frequency ω, the wave vector kz is conserved as the light waves refracted at the 
interface of two multilayer stacks. Therefore, as indicated in Fig. 2(b), the Klein tunneling zone in wave vector 
space can be directly obtained from the overlapped IFCs of two multilayer stacks sharing the same wave vector kz. 
Figure 2(b) marks the Klein tunneling zone for the wave vector kx predicted by the transfer-matrix method with 
the overlap of the βs

(1)-branch and the βs
(2)-branch, as well by the coupled-mode theory with the overlap of the  

β+
(1)-branch and the β−

(2)-branch. It is worth emphasizing the Klein tunneling zones predicted from two 
approaches are different from each other, but they are coincident with each other at the Brillouin zone centre.

The IFCs obtained from the transfer-matrix method are used next to analyze the refraction processes at the 
interface of two multilayer stacks in the Klein tunneling of optical waves. For instance, Fig. 3 shows the IFCs at 
three different frequencies in the frequency range I (ω = 0.083ωp), II (ω = 0.095ωp), and III (ω = 0.112ωp) based 
on the transfer-matrix method. As depicted in Fig. 3(a), The IFCs at the frequency of ω = 0.083ωp (182.296 THz) 
in the frequency range I indicate that an incident TM polarized light beam from air with 17.5° angle of incidence 
will excite two propagation modes within the Au-SiO2 multilayer stack, where the first mode belongs to the  
βs
(1)-branch with the beam propagation direction (the normal direction to the positive z-direction on the IFC) of 

14.8°, and the second mode belongs to the βa
(1)-branch with the beam propagation direction of 56.1°. According 

to the momentum conservation condition for the Klein tunneling, the first mode can tunnel to the βa
(2)-branch in 

Figure 2. (a) The dispersion relations for the Au-SiO2 multilayer stack (blue curves) and the Au-Al2O3 
multilayer stack (red curves). The symmetric mode βs and the anti-symmetric mode βa are marked, together the 
Dirac points (ωD) for two multilayer stacks with the superscripts of (1) and (2). The frequency band ω ∈ [ωL, ωH] 
for the Klein tunneling of optical waves is depicted as three ranges as I, II, and III. (b) The IFCs at the frequency 
ω = 0.095ωp (208.652 THz) in the frequency range II for the Au-SiO2 multilayer stack (blue curves) and the 
Au-Al2O3 multilayer stack (red curves) according to the transfer-matrix method (solid curves) and the coupled-
mode theory (dashed curves). The Klein tunneling zones in wave vector space based on the transfer-matrix 
method (TMM tunneling zone) and the coupled-mode theory (CMT tunneling zone) are also indicated.
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the Au-Al2O3 multilayer stack and excite the mode with the beam propagation direction of 36.5°. In order to 
further visualize the Klein tunneling of optical waves through two multilayer stacks, Fig. 3(d) displays the numer-
ically simulated optical beam propagation and refraction processes inside the multilayer stacks. The simulation 
shows that an incident TM polarized Gaussian beam from air with 17.5° angle of incidence (kx = 0.025 kp) is split 
into two propagating beams in the Au-SiO2 multilayer stack with one beam in the beam propagation direction of 
14.8° tunneling into the Au-Al2O3 multilayer stack and the refraction angle is 36.5°. The similar optical mode 
propagation and tunneling processes for the Klein tunneling at the other two frequencies of ω = 0.095ωp 
(208.652 THz) and ω = 0.112ωp (245.99 THz) can also be found in Fig. 3(b,c,e,f), respectively. In addition, it is 
shown that the Klein tunneling of optical waves can take place between optical modes with different symmetries, 
depending on the operation frequency. Generally, in the frequency range I, the Klein tunneling arises from the 
mode tunneling between the symmetric βs

(1)-branch and the anti-symmetric βa
(2)-branch. In the frequency range 

II, the Klein tunneling occurs between the βs
(1)-branch and the βs

(2)-branch. And in the frequency range III, the 
Klein tunneling is between the βa

(1)-branch and the βs
(2)-branch.

For comparison, the propagation of the TM polarized light outside the Klein tunneling ranges in either the 
wave vector space or the frequency domain is also studied in Fig. 4. The first case displayed in Fig. 4(a,c) demon-
strates the beam propagation at the frequency of ω = 0.095ωp (208.652 THz) which is located in the frequency 
range II for the Klein tunneling, but with the wave vector kx = 0.1 kp out of the tunneling zone. The IFCs in 
Fig. 4(a) indicate that an incident TM polarized light from SiO2 with 46.5° angle of incidence (wave vector 
kx = 0.1 kp) excites the mode in the beam propagation direction of 12.5° in the βs

(1)-branch of the Au-SiO2 multi-
layer stack. However, since no mode exists in the βs

(2)-branch of the Au-Al2O3 multilayer stack to match the wave 
vector kz, the Klein tunneling cannot occur. Correspondingly, Fig. 4(c) shows that the optical beam will not 
refract across the interface of two multilayer stacks based on the simulation, which is coincident with the IFC 
analysis. However, it is worth mentioning that there is still some optical energy evanescently couples cross the 
interface but it gets decayed quickly. The second case shown in Fig. 4(b,d) studies the beam propagation at the 
frequency of ω = 0.125ωp (274.542 THz) which is above the frequency range III for the Klein tunneling. From the 
IFCs in Fig. 4(b), it is shown that an incident TM polarized light from air with 16.3° angle of incidence (wave 
vector kx = 0.035 kp) excites two modes in the Au-SiO2 multilayer stack, with the beam propagation direction of 
25.8° in the βs

(1)-branch and the beam propagation direction of 11.2° in the βa
(1)-branch. Since none of these two 

Figure 3. The IFC analysis based on the transfer-matrix method and the corresponding numerical simulation 
for the Klein tunneling at three different frequencies of (a,d) ω = 0.083ωp (182.296 THz), (b,e) ω = 0.095ωp 
(208.652 THz), and (c,f) ω = 0.112ωp (245.99 THz) in the frequency range of I, II, and III, respectively. In the 
IFCs, the Poynting vectors representing the beam propagation directions are denoted by arrows. The absolute 
value of the magnetic component |Hy| is plotted in the simulation, where the beam propagation direction of the 
TM polarized light beam is marked by arrows.
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modes in the Au-SiO2 multilayer stack can match the mode in the βs
(2)-branch of the Au-Al2O3 multilayer stack 

with the equal wave vector kz, the Klein tunneling cannot occur. The simulation in Fig. 4(d) also clearly shows that 
the propagation mode with the direction of 11.2° in the Au-SiO2 multilayer stack is completely reflected back at 
the interface of two multilayer stacks.

����
��

���	���	���������	��	�����	���������	 Analogous to the Dirac equation describing the Klein 
tunneling for the relativistic electrons, the coupled-mode theory reveals the propagation and refraction pro-
cesses of the TM polarized light waves tunneling across the interface of two multilayer stacks. Moreover, the 
coupled-mode theory can also be used to determine the transmission and reflection properties of the Klein tun-
neling of optical waves. With respect to the two multilayer stacks, the transmission coefficient t and the reflection 
coefficient r can be derived based on the coupled mode-theory as

=
−

− − − −
t C k a

C k a k a C k a k a
i

i i i i
2 sin( )

[1 exp( )]exp( ) [1 exp( )]exp( ) (10)
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x x x x
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2
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2
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1
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Figure 4. The IFC analysis and the corresponding numerical simulation for light propagation outside the Klein 
tunneling ranges, (a,c) at ω = 0.095ωp (208.652 THz) in the frequency range II but with the wave vector out of 
the Klein tunneling zone, and (b,d) at ω = 0.125ωp (274.542 THz) above the frequency range III.



www.nature.com/scientificreports/

7SCIENTIFIC REPORTS����� 9678 �������	
�	
����	���
	��
�����

with the parameters β δ β κ= + −+C ( )/1
(1) (1)

0
(1) (1) and β δ β κ= + −+C ( )/2

(2) (2)
0
(2) (2), the mode propagation 

constants β0
(1) and β0

(2), the propagation constant differences δ(1) and δ(2), and the coupling strengths κ(1) and κ(2), 
for the Au-SiO2 and Au-Al2O3 multilayer stacks, respectively [Appendix 2]. Furthermore, compared to the rela-
tivistic quantum mechanics theory for Klein tunneling, the intensity current for the TM polarized light in either 
of the two multilayer stacks can be defined as

κ= −+ +
⁎ ⁎J A A A Ai ( ) (12)n n n n n2 2 1 2 2 1

Therefore, the transmission and reflection of the Klein tunneling read as

= =T J J C C t/ / (13)trans inc 2 1
2

= =R J J r/ (14)ref inc
2

According to Eqs (13) and (14), Fig. 5 plots the transmission and reflection spectra as a function of wave vector kx, 
together with the corresponding IFCs based on the couple-mode theory at three different frequencies considered 
in Fig. 3. The IFCs in Fig. 5(a–c) are obtained from the coupled-mode theory with both the β+ and β− branches 
denoted for each multilayer stack, in which the two branches involved in the Klein tunneling are denoted by solid 
curves, while other branches are denoted by dashed curves. The boundaries of wave vector kx for the Klein tunne-
ling zone are also marked in the IFC figures. As shown in Fig. 5(d–f), the calculated transmission increases from 
zero to the maximum and then goes back to zero once the wave vector kx is out of the Klein tunneling zone, where 
the incident light is totally reflected by the interface of two multilayer stacks. Correspondingly, the reflection just 
behaves in an opposite way. The transmission and reflection spectra match with the Klein tunneling zone pre-
dicted from the IFC figures. In addition, the results of transmission and reflection spectra also imply the relation 
of T + R = 1 under the lossless condition due to the energy conservation.

Discussion
The Klein tunneling of optical waves across the interface of two lossless metal-dielectric multilayer metamaterial 
stacks is demonstrated through the theoretical analysis based on the coupled-mode theory and the transfer-matrix 
method, together with numerical simulation. The connection between the metal-dielectric multilayer metama-
terial stack modeled with the coupled-mode theory and the relativistic fermions system described by the Dirac 
equation is revealed. The Klein tunneling of optical waves is clearly illustrated by the iso-frequency contour anal-
ysis and the numerical simulation to visualize the beam propagation and refraction processes across the interface 
of multilayer stacks, together with the calculated transmission and reflection spectra. The demonstration of the 

Figure 5. The IFCs based on the coupled-mode theory and the transmission and reflection spectra for the Klein 
tunneling at three different frequencies of (a,d) ω = 0.083ωp (182.296 THz), (b,e) ω = 0.095ωp (208.652 THz), 
and (c,f) ω = 0.112ωp (245.99 THz) in the frequency range of I, II, and III, respectively. The IFCs related to the 
Klein tunneling are denoted by solid curves, while the others are denoted by dashed curves. The boundary of 
Klein tunneling zone in wave vector space is also marked.
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Klein tunneling of optical waves in metal-dielectric multilayer metamaterials near the Dirac points due to the 
coupling between surface plasmon polariton eigenmodes will create new frontiers in exploring the Dirac-cone 
physics associated with relativistic particle behaviors in condensed matter systems.

Method
Coupled-mode theory. In general, the coupled-mode theory can be expressed as

∑ κ=
∼

∼ν

μ
ν
μ
μ

−μ ν
A
z

Ai ed
d (15)

k k zi( )

which describes the relation between the mode ∼νA  with wave vector kν along the z-direction and all other modes 
∼
μA  with wave vector kμ along the same direction through the coupling strength κν

μ. Mathematically, Eq. (15) can 
be rewritten as

∑κ−
⎛
⎝
⎜⎜⎜

+
⎞
⎠
⎟⎟⎟ =

ν
ν ν

μ
ν
μ
μ

A
z

k A Aid
d (16)

by introducing the inverse Fourier transform as = −
∼
ν ν νA A k ziexp( ) and = −

∼
μ μ μA A k ziexp( ). Regarding the 

coupled dielectric-metal-dielectric waveguide array depicted in Fig. 1(b), the coupled-mode theory in Eq. (16) 
reads

κ κ κ−
⎛
⎝
⎜⎜⎜

+ +
⎞
⎠
⎟⎟⎟ = +−

−
+

+z
k A A Ai d

d (17)n n
n

n n
n

n n
n

n2 2
2

2 2
2 1

2 1 2
2 1

2 1

κ κ κ−
⎛
⎝
⎜⎜⎜

+ +
⎞
⎠
⎟⎟⎟ = ++ +

+
+ + +

+
+z

k A A Ai d
d (18)n n

n
n n

n
n n

n
n2 1 2 1

2 1
2 1 2 1

2
2 2 1

2 2
2 2

for the 2n mode and the 2n + 1 mode in the nth waveguide under the tight-binding approximation. With the mod-
ified wave vectors β κ= +k n n

n
1 2 2

2  and β κ= ++ +
+k n n

n
2 2 1 2 1

2 1, and the coupling strength κ κ κ= =−
+
+

n
n

n
n

out 2
2 1

2 1
2 2 

standing for the mode coupling between two adjacent waveguides and κ κ κ= =+
+n

n
n
n

in 2
2 1

2 1
2  standing for the 

mode coupling within the same waveguides, Eqs (17) and (18) can be written as

β δ κ κ−
⎛
⎝
⎜⎜⎜

+ −
⎞
⎠
⎟⎟⎟ = +− +z
A A Ai d

d (19)n n n0 2 out 2 1 in 2 1

β δ κ κ−
⎛
⎝
⎜⎜⎜

+ +
⎞
⎠
⎟⎟⎟ = ++ +z
A A Ai d

d (20)n n n0 2 1 in 2 out 2 2

with respect to the propagation constant β0 = (β2 + β1)/2 and the propagation constant difference δ = (β2 − β1)/2. 
By substituting the symbolic solutions in Eq. (3), the band structure (i.e., the eigenvalues) can be obtained as

β β β κ δ κ σ σ φ= ± + + +± k( , ) ( / ) 1 2 cos (21)x 0 0 in in
2 2

with σ = κout/κin based on Eqs (19) and (20). Note that the band structure in Eq. (21) must be coincident with 
the results of the results of the rigorous solution in Eq. (9) at the Brillouin zone centre, thus following the sim-
ple definitions that β−(0, β0) = β1 = min(βs, βa) and β+(0, β0) = β2 = max(βs, βa), there will be σ = κout/κin = −1 
and κin > 0 for Eq. (21). Simply speaking, since the coupled dielectric-metal-dielectric waveguide array is con-
structed by infinite identical single waveguide, the coupling strength κin and the coupling strength κout can be 
treated to have the same in magnitude but with a fixed phase shift. Therefore, by defining κin = −κout = κ > 0, the 
coupled-mode theory of Eqs (19) and (20) will be deduced into the simple format of Eqs (1) and (2), while the 
band structure of Eq. (21) will be deduced into the simple format of Eq. (4).

����
��

���	���	���������	���������
	 The transmission coefficient and the reflection coefficient are 
derived from the eigenvectors of Eqs (1) and (2) as

δ κ φ δ κ
β φ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =
⎡

⎣

⎢
⎢
⎢

−

+ − +

⎤

⎦

⎥
⎥
⎥

+
φ

+

−

+
A
A z ne i i1

( / ) 2 2cos /
exp( )

(22)
n

n

i
2

2 1 2

for β+-branch in Eq. (4), and

δ κ φ δ κ
β φ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =
⎡

⎣

⎢
⎢
⎢

−

− + − +

⎤

⎦

⎥
⎥
⎥

+
φ

+

−

−
A
A z ne i i1

( / ) 2 2cos /
exp( )

(23)
n

n

i
2

2 1 2

for β−-branch in Eq. (4). Compared to the Klein tunneling in the relativistic quantum mechanics, the Klein tun-
neling should arise from the β+

(1)-branch in the Au-SiO2 multilayer stack to the β−
(2)-branch in the Au-Al2O3 

multilayer stack. According to the conservation of the propagation constants, there will be
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β κ δ κ

β κ δ κ

+ + −

= − + −

k a

k a

( / ) 2 2cos( )

( / ) 2 2cos( ) (24)

x

x

0
(1) (1) (1) (1) 2 (1)

0
(2) (2) (2) (2) 2 (2)

for the TM polarized light. Meanwhile, at the interface of the two different multilayer stacks, i.e., the interface 
between the −1th waveguide and the 0th waveguide (note that = ⌊ ⌋n x a/ ), the amplitudes of the TM polarized 
light should also be conserved, which means

β δ β κ β δ β κ

β δ β κ

⎡

⎣

⎢
⎢
⎢

− −

+ −

⎤

⎦

⎥
⎥
⎥

− +
⎡

⎣

⎢
⎢
⎢

−

+ −

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

− −

+ −

⎤

⎦

⎥
⎥
⎥

+ +

+

k a
k a r

k a
k a

t
k a

i
i

i
i

i

1 exp( )
( )/

exp( )
1 exp( )

( )/
exp( )

1 exp( )
( )/ (25)

x
x

x
x

x

(1)

(1) (1)
0
(1) (1)

(1)
(1)

(1) (1)
0
(1) (1)

(1)

(2)

(2) (2)
0
(2) (2)

Based on Eqs (24) and (25), the transmission coefficient and the reflection coefficient can be obtained as in Eqs 
(10) and (11), respectively.
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